GATE 2018 NEWS

NATIONAL LEVEL ONLINE TEST

GATE Physics syllabus will have core physics and general aptitude topics. Mainly the questions are asked from core Physics and rest of the questions are asked from general aptitude topics. Physics is one of the most competitive exam for GATE aspirants. **GATE **exam for Physics will be of 100 marks. The duration for the exam is three hours. In this article, we are providing the complete syllabus for GATE Physics.

Candidates can check the following points to know the **GATE Syllabus** for physics which are given below:

- Mathematical Physics
- Classical Mechanics
- Electromagnetic Theory
- Quantum Mechanics
- Thermodynamics and Statistics Physics
- Atomic and Molecular Physics
- Solid State Physics & Electronics
- Nuclear and Particle Physics

Linear vector space: basis, orthogonality and completeness; matrices; vector calculus; linear differential equations; elements of complex analysis: Cauchy Riemann conditions, Cauchy’s theorems, singularities, residue theorem and applications; Laplace transforms, Fourier analysis; elementary ideas about tensors: covariant and contravariant tensor, Levi-Civita and Christoffel symbols.

Alembert’s principle, cyclic coordinates, variational principle, Lagrange’s equation of motion, central force and scattering problems, rigid body motion; small oscillations, Hamilton’s formalisms; Poisson bracket; special theory of relativity: Lorentz transformations, relativistic kinematics, mass‐energy equivalence.

Solutions of electrostatic and magnetostatic problems including boundary value problems; dielectrics and conductors; Maxwell’s equations; scalar and vector potentials; Coulomb and Lorentz gauges; Electromagnetic waves and their reflection, refraction, interference, diffraction and polarization; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.

Postulates of quantum mechanics; uncertainty principle; Schrodinger equation; one-, two- and three-dimensional potential problems; particle in a box, transmission through one dimensional potential barriers, harmonic oscillator, hydrogen atom; linear vectors and operators in Hilbert space; angular momentum and spin; addition of angular momenta; time independent perturbation theory; elementary scattering theory.

Laws of thermodynamics; macrostates and microstates; phase space; ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck’s distribution law; Bose‐Einstein condensation; first and second order phase transitions, phase equilibria, critical point.

Spectra of one‐ and many‐electron atoms; LS and jj coupling; hyperfine structure; Zeeman and Stark effects; electric dipole transitions and selection rules; rotational and vibrational spectra of diatomic molecules; electronic transition in diatomic molecules, Franck‐Condon principle; Raman effect; NMR, ESR, X-ray spectra; lasers: Einstein coefficients, population inversion, two and three level systems.

Elements of crystallography; diffraction methods for structure determination; bonding in solids; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids: nearly free electron and tight binding models; metals, semiconductors and insulators; conductivity, mobility and effective mass; optical, dielectric and magnetic properties of solids; elements of superconductivity: Type-I and Type II superconductors, Meissner effect, London equation. Semiconductor devices: diodes, Bipolar Junction Transistors, Field Effect Transistors; operational amplifiers: negative feedback circuits, active filters and oscillators; regulated power supplies; basic digital logic circuits, sequential circuits, flip‐flops, counters, registers, A/D and D/A conversion.

Nuclear radii and charge distributions, nuclear binding energy, Electric and magnetic moments; nuclear models, liquid drop model: semi‐empirical mass formula, Fermi gas model of nucleus, nuclear shell model; nuclear force and two nucleon problem; alpha decay, beta‐decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions, conservation laws; fission and fusion; particle accelerators and detectors; elementary particles, photons, baryons, mesons and leptons; quark model.

2017-09-20 12:57:29GATE 2018### GATE 2018 M.Tech Admission Th ..

COAP, provides a common platform for the candidate ...

2017-09-20 13:11:48GATE 2018### New Changes Introduced in GAT ..

IIT Guwahati is appointed as the conducting body o ...

2017-09-20 13:27:24GATE 2018### GATE 2018 Photograph, Signatu ..

GATE Registration will commence from September 01, ...

2017-09-20 13:33:01GATE 2018### GATE 2018 to be Conducted by ..

GATE 2018 to be conducted by IIT Guwahati, Applica ...

## Comments

## Comments

No Comments To Show